Path integration absent in scent-tracking fimbria-fornix rats: evidence for hippocampal involvement in "sense of direction" and "sense of distance" using self-movement cues.
نویسندگان
چکیده
Allothetic and idiothetic navigation strategies use very different cue constellations and computational processes. Allothetic navigation requires the use of the relationships between relatively stable external (visual, olfactory, auditory) cues, whereas idiothetic navigation requires the integration of cues generated by self-movement and/or efferent copy of movement commands. The flexibility with which animals can switch between these strategies and the neural structures that support these strategies are not well understood. By capitalizing on the proclivity of foraging rats to carry large food pellets back to a refuge for eating, the present study examined the contribution of the hippocampus to the use of allothetic versus idiothetic navigation strategies. Control rats and fimbria-fornix-ablated rats were trained to follow linear, polygonal, and octagonal scent trails that led to a piece of food. The ability of the rats to return to the refuge with the food via the shortest route using allothetic cues (visual cues and/or the odor trail available) or using ideothetic cues (the odor trail removed and the rats blindfolded or tested in infrared light) was examined. Control rats "closed the polygon" by returning directly home in all cue conditions. Fimbria-fornix rats successfully used allothetic cues (closed the polygon using visual cues or tracked back on the string) but were insensitive to the direction and distance of the refuge and were lost when restricted to idiothetic cues. The results support the hypothesis that the hippocampal formation is necessary for navigation requiring the integration of idiothetic cues.
منابع مشابه
A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat
Piloting and dead reckoning navigation strategies use very different cue constellations and computational processes (Darwin, 1873; Barlow, 1964; O'Keefe and Nadel, 1978; Mittelstaedt and Mittelstaedt, 1980; Landeau et al., 1984; Etienne, 1987; Gallistel, 1990; Maurer and Se guinot, 1995). Piloting requires the use of the relationships between relatively stable external (visual, olfactory, audit...
متن کاملRats with fimbria-fornix lesions are impaired in path integration: a role for the hippocampus in "sense of direction".
Animals can locate their present position in relation to a starting point and return to that starting point using cues generated by self-movement, a navigation strategy called dead-reckoning. Because contemporary research on spatial navigation suggests that some aspects of spatial navigation depend on the integrity of the hippocampal formation, whereas others do not, the present study examined ...
متن کاملDead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests.
Animals navigate using cues generated by their own movements (self-movement cues or idiothetic cues), as well as the cues they encounter in their environment (distal cues or allothetic cues). Animals use these cues to navigate in two different ways. When dead reckoning (deduced reckoning or path integration), they integrate self-movement cues over time to locate a present position or to return ...
متن کاملRats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where.
Some theories of hippocampal formation function postulate that it is involved in using the relationships between distal cues for spatial navigation. That rats with damage to the hippocampal formation are impaired in learning place responses of escaping to a platform hidden just below the surface of the water of a swimming pool, supports this view. Using rats with fimbria-fornix (FF) lesions, we...
متن کاملQuantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning.
A rat's proclivity to explore a novel environment presents a behaviorally rich paradigm to investigate the role of the hippocampus in spatial navigation. Here we describe a novel technique of behavioral analysis that is derived from a single exploratory trip. An exploratory trip was defined as a rat's departure from the home base that ended when the rat returned to the home base. The behavior o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 11 شماره
صفحات -
تاریخ انتشار 1999